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Abstract 
A lumped element circuit model is derived which 

accounts for both electric and magnetic coupling of the beam 
to the electrodes and drive circuitry of an electrostatic column. 
A modified one dimensional Poisson equation which 
incorporates two dimensional effects is discussed. An 
effective capacitance between the beam and the column 
electrodes which affects the electric coupling is estimated. 
Simple analytic cases which treat electric and magnetic 
coupling separately are solved and compared against a 
numerical simulation. Scaling laws are given for the 
magnitude of the beam loading. 

I. INTRODUCTION 

This paper briefly discusses a beam loading model for 
an injector column system and how 2-D effects can be 
incorporated in a one dimensional code. We will show that 
the loading arises from two different effects which can be tied 
to electrostatic and magnetic fields. 

II. BEAM LOADING MODEL 

in the circuit is a stray capacitance Cs between each plate and 
the outer tank (ground)). 
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We wish to consider beam loading in a cylindrical 

column such as shown figure 1. A large insulator supports 
several electrodes or plates. There are external resistors which 
help to grade the applied voltage to the electrodes. There is a 
substantial capacitance between each electrode. The column 
assembly is enclosed in a large tank so that there is an 
additional capacitance from each electrode to the tank (which is 
assumed to be at ground potential). 
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Figure 1. Typical ion injector column. 

Figure 2 shows the effects of the beam’s azimuthal 
magnetic field. Since the electrodes are good conductors the 
transient magnetic field generated by the beam cannot 
penetrate them on the time scale of the pulse. Ampere’s law 
then requires that surface currents are generated in order to set 
up a magnetic field that cancels the beam’s field inside the 
electrodes. The total surface current is equal and opposite to 
the beam current and can be approximately modeled as a 
current source in parallel with the inter-plate capacitance and 
resistance as shown in the bottom half of figure 2 (also shown 

Figure 2. The beam’s azimuthal magnetic field drives a return 
current on the electrode surfaces. The circuit equivalent is also 

shown. 

Next consider the effect of the beam’s radial electric 
field on the electrodes. If we imagine an isolated conducting 
aperture in a conducting cylinder as a uniform coasting beam 
passes through we would see electrons rushing in radially on 
the aperture as the head of the beam passes by. 

beam potential 

Figure 3. The beam’s radial electric field draws in charges 
onto the plate. The current that flows in response to the 
passage of the beam appears to be a capacitive charging 

current. 
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This current would look like the derivative of the 
potential difference between the axis of the system and the 
plate. If the beam is long and of constant density, no 
additional radial current will flow. As the tail of the beam 
passes underneath the aperture the electrons which initially 
rushed in will be expelled and the radial current will reverse 
sign as the potential difference between the axis and the plate 
returns to zero. The radial current looks like a capacitive 
charging current that is proportional to the time derivative of a 
the potential difference between the axis and the plate. This is 
represented as a capacitance Cg in series with a voltage source 
between the plate and ground. The value of the voltage source 
is the value of the potential on the axis. 
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Figure 4. The circuit representation of the column showing Figure 4. The circuit representation of the column showing 

both the return current and capacitive loadings. both the return current and capacitive loadings. 

In order to evaluate the loading we need to estimate 
both the value of the “beam capacitance” and the value of the 
potential along the axis. 

Figure 5. Geometry for the “beam capacitance” calculation. 

We first look at estimating the value of the 
capacitance. We consider a uniform coasting beam just 
touching a periodic array of conducting apertures in an 
infinitely long cylinder. We will solve for the axial 
component of electric field and find the total charge induced on 
each aperture from the boundary condition E,=o&,. We will 
then calculate the potential difference across the beam and 
define the “beam capacitance” as the total charge on the 
aperture divided by the potential difference across the beam. 
The capacitance is a function of the cylinder radius, aperture 
radius and aperture separation as is shown in figure 6. The 
presence of other apertures acts to reduce the local radial 
electric field of the beam thus reducing the amount of charge 
induced on a given aperture. Hence, the capacitance of a given 
plate will decrease as the inter-plate spacing decreases. For 
d/2b greater than approximately 2.0 the other plates have no 
effect and this solution is almost indistinguishable from that 
of a single plate in an infinite cylinder. The capacitance can 

be found a@kally as Cg=16nbb f(a/b,dib) where f(a/b,d&) 
is given as 
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Figure 6. f(alb,ti) as a function of inter-plate spacing. 

We next turn to the problem of calculating the 
potential along the axis. The correct way to do this of course 
is to solve the 2-D Poisson equation. However, we would 
lie to use this model in a I-D code so we need some way of 
accounting for 2-D effects. A “field equation” that fits this 
requirement was suggested by Langdon [I]. It basically 
approximates V12$ by the quantity (V-$)/a ** where V is 
the potential along the outer waU of the problem and @ is the 
potential on axis. The quanlity a * is defmed as 

and is a characteristic length over which potential changes 
axially. Thus, the 2-D Poisson equation is to be replaced by 
the approximate equation 

where Cp now represents the on-axis potential. 
We can see how well this equation works on a test 

problem. Imagine a conducting cylinder with conducting end 
caps. Inside this cylinder we put a charged column of uniform 
radial density of radius a and arrange for the axial variation of 
density to correspond to that of steady state Child-Langmuir 
flow (the density varies as z-2/3). 
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Figure 7. Geometry for Child-Langmuir flow density 
problem in a conducting cylinder with end plates. 
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We can solve this problem using the exact 2-D 
Poisson’s equation and by using the “field equation”. The 
solutions are overlaid on figure 8. We see that the field 
equation is remarkably accurate and correctly incorporates the 
2-D effects of the end caps shorting out the radial electric 
fields. 
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Figure 8. Comparison of field equation result with 2-D 
Poisson solution for a Child-Langmuir problem. 

III. ANALYTIC SOLUTION AND SCALING LAWS 

We now wish to put all these elements together to 
see the effects of beam loading. We will try a simplified 
problem so that we can solve it analytically to use as a check 
against the HINJ implementation [21. We take the continuum 
limit of a discrete network in order to use differential equations 
in both z and t. We fist look at the effects of the “beam 
capacitance” alone without the current source. In addition, to 
simplify the problem we assume that the column source 
impedance is zero and we eliminate the stray capacitance (that 
is in figure 4 we remove the current source and set Cs to zero. 
We take a coasting beam of constant density that is traveling 
at speed v. We take the length of the column to be 10 a* aud 
assume that both ends of the column are grounded. 

We plot the solution as a dimensionless voltage as a 
function of length along the column for successive times. We 
see that without a source impedance the column voltage rises 
reaching a maximum at about the time that the head of the 
beam reaches the end of the column (x=10) and then decays 
asymptotically to zero (for au infinitely long beam) as the 
resistance discharges the capacitors to ground. Tbe quantity 
v. is given by 

(3) 

while x is defined as x = pcf /a *. 
From this and other simple test problems (not 

discussed) we can draw some conclusions about beam loading. 
The beam capacitance and plate capacitance form a divider 
along which the beam potential appears. From our test 
problem for the field equation we see that the electric field 
from a sharply rising beam front actually spreads out over a 
distance roughly equal to a *. The column forms a divider 
with series capacitance equal to Cp/ a * and with shunt 
capacitance equal to Cc u *. When Ce u ** /Cn is greater 

than one then essentially the entire beam potential appears on 
the plate and raises the column voltage. When this ratio is 
less than one, however, the column is raised to something on 
the order of the maximum beam potential multiplied by this 
ratio. 
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Figure 9. Solution to the simplified network discussed in the 
text. 

The current sources will also raise the column 
voltage if there is no source impedance. The effect is 
qualitatively similar to the case of just voltage sources alone. 
In this case the effective length for the circuit is roughly given 
by the velocity of the beam and the RC time constant per unit 
length. Multiplying this length by the resistance per unit 
length gives an effective resistance through which the return 
current is flowing raising the voltage. 

When the source impedance is included in the picture 
the column voltages now go negative (we are speaking of the 
perturbation to the column voltages caused by the loading). 
This occurs because the return current is flowing through this 
impedance and represents the mechanism by which the source 
of the column voltage is coupling energy into the beam. 
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